7  Revenue and expenditure in sport

NSC-R Tidy Tuesday May 2022

Author

Alex Trinidad

Published

March 22, 2022

7.1 Introduction

The dataset for this Tidy Tuesday is about Collegiate Sports in US. Alex Trinidad explores how revenue and expenditure are distributed in sports. He also looks at the differences in sport revenues and expenditures between men and women.`He presented this on May 3th 2022 in the NSC-R Tidy Tuesday serie. Here you can find the original post (Trinidad, 2022)

7.2 Load packages and importing data

library(tidytuesdayR)
library(tidyverse)

Identify TidyTuesday data sets in 2022.

tidytuesdayR::tt_datasets("2022")
   Week       Date                                   Data
1     1 2022-01-04         Bring your own data from 2022!
2     2 2022-01-11                      Bee Colony losses
3     3 2022-01-18                  Chocolate Bar ratings
4     4 2022-01-25                            Board games
5     5 2022-02-01                             Dog breeds
6     6 2022-02-08                        Tuskegee Airmen
7     7 2022-02-15                   #DuBoisChallenge2022
8     8 2022-02-22                    World Freedom index
9     9 2022-03-01              Alternative Fuel Stations
10   10 2022-03-08               Erasmus student mobility
11   11 2022-03-15                    CRAN/BIOC Vignettes
12   12 2022-03-22                             Baby names
13   13 2022-03-29              Collegiate Sports Budgets
14   14 2022-04-05                   Digital Publications
15   15 2022-04-12                   Indoor Air Pollution
16   16 2022-04-19            Crossword Puzzles and Clues
17   17 2022-04-26                     Kaggle Hidden Gems
18   18 2022-05-03                   Solar/Wind utilities
19   19 2022-05-10                   NYTimes best sellers
20   20 2022-05-17                             Eurovision
21   21 2022-05-24                          Women's Rugby
22   22 2022-05-31                Company reputation poll
23   23 2022-06-07 Pride Corporate Accountability Project
24   24 2022-06-14                             US Drought
25   25 2022-06-21                             Juneteenth
26   26 2022-06-28                      UK Gender pay gap
27   27 2022-07-05                  San Francisco Rentals
28   28 2022-07-12                       European flights
29   29 2022-07-19                    Technology Adoption
30   30 2022-07-26                    Bring your own data
31   31 2022-08-02                    Oregon Spotted Frog
32   32 2022-08-09                          Ferris Wheels
33   33 2022-08-16              Open Source Psychometrics
34   34 2022-08-23                           CHIP dataset
35   35 2022-08-30                            Pell Grants
36   36 2022-09-06                          LEGO database
37   37 2022-09-13                                Bigfoot
38   38 2022-09-20                Hydro Wastewater plants
39   39 2022-09-27                     Artists in the USA
40   40 2022-10-04                  Product Hunt products
41   41 2022-10-11                           Ravelry data
42   42 2022-10-18               Stranger things dialogue
43   43 2022-10-25                  Great British Bakeoff
44   44 2022-11-01                          Horror Movies
45   45 2022-11-08                         Radio Stations
46   46 2022-11-15                       Web page metrics
47   47 2022-11-22                             UK Museums
48   48 2022-11-29                         FIFA World Cup
49   49 2022-12-06                              Elevators
50   50 2022-12-13             Monthly State Retail Sales
51   51 2022-12-20              Weather Forecast Accuracy
52   52 2022-12-27                    Star Trek Timelines
                                              Source
1                                                   
2                                               USDA
3                                   Flavors of Cacao
4                                             Kaggle
5                               American Kennel Club
6  Commemorative Airforce (CAF) by way of the VA-TUG
7                                     Anthony Starks
8                               UN and Freedom House
9                                             US DOT
10                                    Data.Europa.eu
11                              Robert Flight GitHub
12                       US babynames &  nzbabynames
13                 Equity in Athletics Data Analysis
14                                     Project Oasis
15                                OurWorldInData.org
16                             Cryptics.georgeho.org
17                                            Kaggle
18                                      Berkeley Lab
19                                       Post45 Data
20                                        Eurovision
21                       Women's Rugby - ScrumQueens
22                             Axios and Harris Poll
23                                 Data For Progress
24                                       Drought.gov
25                WEB DuBois style by Anthony Starks
26                     gender-pay-gap.service.gov.uk
27                                   Kate Pennington
28                                       Eurocontrol
29                                     data.nber.org
30                                              None
31                        usgs.gov spotted frog data
32                                      ferriswheels
33                 Open-Source Psychometrics Project
34                                      CHIP Dataset
35                              US Dept of Education
36                                       rebrickable
37                                        Data.World
38                                Macedo et al, 2022
39                                          arts.gov
40                                    components.one
41                                       ravelry.com
42                                         8flix.com
43                                       bakeoff pkg
44                                The Movie Database
45                                         Wikipedia
46                                   httpArchive.org
47                  MuseWeb by way of Data Is Plural
48                             Kaggle FIFA World Cup
49                                    Elevators data
50      US Census Bureau Monthly State Retails Sales
51                Weather Forecast  Capstone Project
52                                     rtrek package
                                                         Article
1                                                               
2                                                   Bee Informed
3                                       Will Canniford on Kaggle
4                                                Alyssa Goldberg
5                                                            Vox
6               Wikipedia & Air Force Historical Research Agency
7                                             Nightingale by DVS
8                                                  Freedom House
9                                                            EIA
10                                                      Wimdu.co
11                                          Robert Flight GitHub
12                            Emily Kothe's nzbabynames vignette
13                                                           NPR
14                                          Project Oasis Report
15                                            OurWorldInData.org
16                                          Towards Data Science
17                                Kaggle - Notebooks of the Week
18                                           Berkeley Lab report
19        Finding Trends in NY Times Best Sellers - Kailey Smith
20                                                 Tanya Shapiro
21                                                   ScrumQueens
22                                               The Harris Poll
23                                             Data For Progress
24                                            Drought.gov report
25                        Isabella Benabaye's blog on Juneteenth
26                                                    ons.gov.uk
27                                               Matrix-Berkeley
28                                                  ec.europa.eu
29                                                 www.cgdev.org
30                                                          None
31                                 usgs.gov spotted-frog-article
32                                                  ferriswheels
33                                         Character Personality
34                                                   arxiv paper
35                                                pell R package
36                                                   rebrickable
37                                               Finding Bigfoot
38                                               HydroWASTE v1.0
39                                      Artists in the Workforce
40                 The Gamer and the Nihilist by Andrew Thompson
41                                           {ravelRy} R package
42                               freeCodeCamp & 'stringr things'
43 Data Visualization in the Tidyverse - The Great Tidy Plot Off
44                                 Tanya Shapiro's Horror Movies
45                         Visualizing the Geography of FM Radio
46                                  DataWrapper & Data is Plural
47                                          MuseWeb Key Findings
48                                             Dataset Notebooks
49                           Elevators data package and examples
50               Interactive Visualization from US Census Bureau
51                            Weather Forecast  Capstone Project
52                                                 rtrek package

Download data set. Note: As list.

ttdata <- tidytuesdayR::tt_load(x = 2022, week = 13)

    Downloading file 1 of 1: `sports.csv`

Select data set of interest.

sportdt <- ttdata[[1]]

Alternative

sportdt <- ttdata$sports

7.3 Data Exploration

Explore data set

glimpse(sportdt)
Rows: 132,327
Columns: 28
$ year                 <dbl> 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2~
$ unitid               <dbl> 100654, 100654, 100654, 100654, 100654, 100654, 1~
$ institution_name     <chr> "Alabama A & M University", "Alabama A & M Univer~
$ city_txt             <chr> "Normal", "Normal", "Normal", "Normal", "Normal",~
$ state_cd             <chr> "AL", "AL", "AL", "AL", "AL", "AL", "AL", "AL", "~
$ zip_text             <chr> "35762", "35762", "35762", "35762", "35762", "357~
$ classification_code  <dbl> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1~
$ classification_name  <chr> "NCAA Division I-FCS", "NCAA Division I-FCS", "NC~
$ classification_other <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ ef_male_count        <dbl> 1923, 1923, 1923, 1923, 1923, 1923, 1923, 1923, 1~
$ ef_female_count      <dbl> 2300, 2300, 2300, 2300, 2300, 2300, 2300, 2300, 2~
$ ef_total_count       <dbl> 4223, 4223, 4223, 4223, 4223, 4223, 4223, 4223, 4~
$ sector_cd            <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ sector_name          <chr> "Public, 4-year or above", "Public, 4-year or abo~
$ sportscode           <dbl> 1, 2, 3, 7, 8, 15, 16, 22, 26, 33, 1, 2, 3, 8, 12~
$ partic_men           <dbl> 31, 19, 61, 99, 9, NA, NA, 7, NA, NA, 32, 13, NA,~
$ partic_women         <dbl> NA, 16, 46, NA, NA, 21, 25, 10, 16, 9, NA, 20, 68~
$ partic_coed_men      <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ partic_coed_women    <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, N~
$ sum_partic_men       <dbl> 31, 19, 61, 99, 9, 0, 0, 7, 0, 0, 32, 13, 0, 10, ~
$ sum_partic_women     <dbl> 0, 16, 46, 0, 0, 21, 25, 10, 16, 9, 0, 20, 68, 7,~
$ rev_men              <dbl> 345592, 1211095, 183333, 2808949, 78270, NA, NA, ~
$ rev_women            <dbl> NA, 748833, 315574, NA, NA, 410717, 298164, 13114~
$ total_rev_menwomen   <dbl> 345592, 1959928, 498907, 2808949, 78270, 410717, ~
$ exp_men              <dbl> 397818, 817868, 246949, 3059353, 83913, NA, NA, 9~
$ exp_women            <dbl> NA, 742460, 251184, NA, NA, 432648, 340259, 11388~
$ total_exp_menwomen   <dbl> 397818, 1560328, 498133, 3059353, 83913, 432648, ~
$ sports               <chr> "Baseball", "Basketball", "All Track Combined", "~

Select variables of interest and define chr-variables as fct

ttdt_selection <- sportdt %>% 
  dplyr::select(year, institution_name, classification_name, partic_men, partic_women,
         ef_male_count, ef_female_count, ef_total_count, rev_men,
         rev_women,total_rev_menwomen, exp_men, exp_women,
         total_exp_menwomen, sports) %>% 
  mutate(year = as.factor(year),
         institution_name = as.factor(institution_name),
         classification_name = as.factor(classification_name),
         sports = as.factor(sports),
         total_par = partic_men + partic_women) 

Now we can answer some questions:

How many years?

sum(table(unique(ttdt_selection$year)))
[1] 5

Or:

sum(table(fct_unique(ttdt_selection$year)))
[1] 5

How many divisions?

sum(table(unique(ttdt_selection$classification_name)))
[1] 19

How may institutions?

sum(table(unique(ttdt_selection$institution_name)))
[1] 2212

How many sports?

sum(table(unique(ttdt_selection$sports)))
[1] 38

How many cases per wave?

ttdt_selection %>% 
  count(year)
# A tibble: 5 x 2
  year      n
  <fct> <int>
1 2015  17345
2 2016  17414
3 2017  17628
4 2018  17772
5 2019  62168

How many cases per sport?

ttdt_selection %>% 
  count(sports)
# A tibble: 38 x 2
   sports                 n
   <fct>              <int>
 1 All Track Combined  4870
 2 Archery             1557
 3 Badminton           1554
 4 Baseball            8644
 5 Basketball         10000
 6 Beach Volleyball    1988
 7 Bowling             2176
 8 Diving              1530
 9 Equestrian          1799
10 Fencing             1687
# ... with 28 more rows

7.4 Visualizations

Plot measures per sport

ggplot(data = ttdt_selection) +
  geom_bar(mapping = aes(x = sports, color = sports))  +
  theme(legend.position = "none")

Proportions in a bar chart

Plot measures per sport (y axis)

ggplot(data = ttdt_selection) + 
  geom_bar(mapping = aes(y = sports, color = sports))

Measures per sport

Plot measures per sport (y axis ordered infrequent).

ggplot(data = ttdt_selection) + 
  geom_bar(mapping = aes(y = fct_infreq(sports), color = sports))

Measures per sport ordered infrequent

Plot measures per sport (y)

ggplot(data = ttdt_selection) + 
  geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports))

Measures per sport ordered 2

Plot measures per sport (y)

ggplot(data = ttdt_selection) + 
  geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports)) +
  ylab("Sports") 

Measures per sport ordered 3

Plot measures per sport (per year)

ggplot(data = ttdt_selection) + 
  geom_bar(mapping = aes(y = fct_rev(fct_infreq(sports)), color = sports)) +
  ylab("Sports") +
  facet_wrap(vars(year)) +
  theme(legend.position = "none")

Measures per sport via facet wrap

7.5 Missing data

Is any NA in any of my variables?

summary(ttdt_selection)
   year                  institution_name 
 2015:17345   Westminster College:   238  
 2016:17414   Union College      :   233  
 2017:17628   Columbia College   :   187  
 2018:17772   Bethel University  :   181  
 2019:62168   Marian University  :   166  
              Emmanuel College   :   162  
              (Other)            :131160  
                         classification_name   partic_men      partic_women   
 NCAA Division III with football   :18835    Min.   :  1.00   Min.   :  1.00  
 NCAA Division III without football:12310    1st Qu.: 13.00   1st Qu.: 11.00  
 NJCAA Division I                  :11831    Median : 22.00   Median : 16.00  
 NCAA Division II with football    :11535    Mean   : 30.86   Mean   : 20.71  
 NCAA Division I-FBS               :10052    3rd Qu.: 35.00   3rd Qu.: 23.00  
 NCAA Division II without football : 9571    Max.   :331.00   Max.   :327.00  
 (Other)                           :58193    NA's   :70462    NA's   :63442   
 ef_male_count   ef_female_count ef_total_count     rev_men         
 Min.   :    0   Min.   :    0   Min.   :    0   Min.   :       65  
 1st Qu.:  513   1st Qu.:  652   1st Qu.: 1194   1st Qu.:    63428  
 Median :  986   Median : 1248   Median : 2259   Median :   158126  
 Mean   : 2126   Mean   : 2496   Mean   : 4622   Mean   :   809011  
 3rd Qu.: 2385   3rd Qu.: 2860   3rd Qu.: 5237   3rd Qu.:   400604  
 Max.   :35954   Max.   :30325   Max.   :66279   Max.   :156147208  
                                                 NA's   :70462      
   rev_women        total_rev_menwomen     exp_men           exp_women      
 Min.   :       0   Min.   :      130   Min.   :      65   Min.   :     65  
 1st Qu.:   58746   1st Qu.:    96299   1st Qu.:   63062   1st Qu.:  59301  
 Median :  138318   Median :   228776   Median :  159666   Median : 141800  
 Mean   :  279346   Mean   :   795231   Mean   :  662386   Mean   : 331594  
 3rd Qu.:  331120   3rd Qu.:   541876   3rd Qu.:  424025   3rd Qu.: 361860  
 Max.   :21440365   Max.   :156147208   Max.   :69718059   Max.   :9485162  
 NA's   :63444      NA's   :45193       NA's   :70462      NA's   :63442    
 total_exp_menwomen        sports        total_par     
 Min.   :     130   Basketball:10000   Min.   :  2.00  
 1st Qu.:   96436   Volleyball: 9122   1st Qu.: 22.00  
 Median :  234559   Soccer    : 8647   Median : 32.00  
 Mean   :  732422   Baseball  : 8644   Mean   : 45.66  
 3rd Qu.:  585604   Softball  : 8560   3rd Qu.: 53.00  
 Max.   :69718059   Golf      : 7060   Max.   :617.00  
 NA's   :45191      (Other)   :80294   NA's   :88713   

Remove NAs from revenues in men and women.

myselection <- ttdt_selection %>% 
  filter(!rev_men %in% NA & !rev_women %in% NA)

Check if NA’s in myselection dataset.

summary(myselection)
   year                 institution_name
 2015:8559   Westminster College:  103  
 2016:8628   Bethel University  :   84  
 2017:8767   Union College      :   84  
 2018:8880   Emmanuel College   :   79  
 2019:8780   Harvard University :   75  
             Marian University  :   73  
             (Other)            :43116  
                         classification_name   partic_men      partic_women   
 NCAA Division III with football   : 8268    Min.   :  1.00   Min.   :  1.00  
 NCAA Division III without football: 5186    1st Qu.: 11.00   1st Qu.: 10.00  
 NCAA Division II without football : 3575    Median : 17.00   Median : 15.00  
 NCAA Division II with football    : 3415    Mean   : 24.18   Mean   : 21.48  
 NAIA Division II                  : 3313    3rd Qu.: 28.00   3rd Qu.: 25.00  
 NCAA Division I-FCS               : 3048    Max.   :290.00   Max.   :327.00  
 (Other)                           :16809                                     
 ef_male_count   ef_female_count ef_total_count     rev_men        
 Min.   :    0   Min.   :    0   Min.   :    0   Min.   :      65  
 1st Qu.:  546   1st Qu.:  684   1st Qu.: 1268   1st Qu.:   55012  
 Median : 1004   Median : 1272   Median : 2284   Median :  131951  
 Mean   : 2140   Mean   : 2493   Mean   : 4633   Mean   :  405014  
 3rd Qu.: 2393   3rd Qu.: 2830   3rd Qu.: 5237   3rd Qu.:  309113  
 Max.   :35954   Max.   :30325   Max.   :66279   Max.   :45632816  
                                                                   
   rev_women        total_rev_menwomen    exp_men           exp_women      
 Min.   :       0   Min.   :     130   Min.   :      65   Min.   :     65  
 1st Qu.:   51180   1st Qu.:  108178   1st Qu.:   54786   1st Qu.:  51228  
 Median :  122982   Median :  259386   Median :  134146   Median : 125092  
 Mean   :  269807   Mean   :  674821   Mean   :  392666   Mean   : 319436  
 3rd Qu.:  299104   3rd Qu.:  618145   3rd Qu.:  331960   3rd Qu.: 323727  
 Max.   :21440365   Max.   :48559421   Max.   :22178473   Max.   :9485162  
                                                                           
 total_exp_menwomen                        sports        total_par     
 Min.   :     130   Basketball                : 9448   Min.   :  2.00  
 1st Qu.:  107800   Soccer                    : 6657   1st Qu.: 22.00  
 Median :  261562   Tennis                    : 4628   Median : 32.00  
 Mean   :  712101   Golf                      : 4258   Mean   : 45.66  
 3rd Qu.:  659871   All Track Combined        : 3604   3rd Qu.: 53.00  
 Max.   :28847845   Track and Field, X-Country: 3442   Max.   :617.00  
                    (Other)                   :11577                   

Alternative way

table(is.na(myselection))

 FALSE 
697824 

7.6 Revenues and expenditures

Calculate revenues and expenditure per participant and add new variables.

myselection <- myselection %>% 
  mutate(exp_per_men = exp_men / partic_men,
         exp_per_women = exp_women / partic_women,
         exp_per_total = total_exp_menwomen / total_par, 
         rev_per_men = rev_men / partic_men,
         rev_per_women = rev_women / partic_women,
         rev_per_total = total_rev_menwomen / total_par)

Revenues

Now look at revenue in sports (Mean revenues per sport). This will not work.

rev_mean <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_total = mean(total_rev_menwomen)) %>% 
      ggplot(aes(x = mean_rev_total, y = sports, color = sports)) +
      geom_bar() +
      labs(x = "Mean Revenues", y = "Sports") 

Get rid of scientific notation

options(scipen = 999)

Or activate scientific notation

options(scipen = 0)

Solution change to stat = “identity” in geom_bar()

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_total = mean(total_rev_menwomen)) %>% 
  ggplot(aes(x = mean_rev_total, y = sports, color = sports)) +
  geom_bar(stat = "identity") +
  labs(x = "Mean Revenues", y = "Sports") 

Ordering bars now

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_total = mean(total_rev_menwomen)) %>% 
  ggplot(aes(x = mean_rev_total, y = fct_rev(fct_infreq(sports)), color = sports)) +
  geom_bar(stat = "identity") +
  labs(x = "Mean Revenues", y = "Sports") 

Revenues per sport ordered

Bars reordered.

myselection %>% 
  group_by(year, sports) %>% 
  summarise(mean_rev_total = mean(total_rev_menwomen)) %>% 
  ggplot(aes(x = mean_rev_total, y = reorder(sports, mean_rev_total),
             color = sports)) +
  geom_bar(stat = "identity") +
  labs(x = "Mean Revenues", y = "Sports") + 
  theme(legend.position = "none") + 
  facet_wrap(vars(year))

Revenues per sport bars reordered

Plot mean revenues per sport and sex.

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_men = mean(rev_men),
            mean_rev_women = mean(rev_women)) %>% 
  pivot_longer(cols = c(mean_rev_men,mean_rev_women), names_to = "sex",
               values_to = "mean_rev") %>% 
  ggplot(aes(x = mean_rev, y = reorder(sports, mean_rev), fill = sex)) +
  geom_bar(stat = "identity") +
  labs(x = "Mean Revenues", y = "Sports", fill = "Sex") +
  scale_fill_discrete(labels = c("Men", "Women"))

Revenues per sport and sex

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_men = mean(rev_men),
            mean_rev_women = mean(rev_women)) %>% 
  mutate(mean_dif = sqrt((mean_rev_men - mean_rev_women) ^ 2)) %>% 
  ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences in Revenues (USD)",  y = "Sports", fill = "USD")  

Mean sex differences in revenues (USD)

Expenditures in Sport

Plot mean expenditure

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_men = mean(exp_men),
            mean_exp_women = mean(exp_women)) %>% 
  pivot_longer(cols = c(mean_exp_men,mean_exp_women), names_to = "sex",
               values_to = "mean_exp") %>% 
  ggplot(aes(x = mean_exp, y = reorder(sports, mean_exp), fill = sex)) +
  geom_bar(stat = "identity") +
  labs(x = "Mean Expenditure", y = "Sports", fill = "Sex") +
  scale_fill_discrete(labels = c("Men", "Women"))

Expenditures in sport

Plotting mean differences by sex.

myselection %>% 
  group_by(sports) %>% # if facet_wrap, add year
  summarise(mean_exp_men = mean(exp_men),
            mean_exp_women = mean(exp_women)) %>% 
  mutate(mean_dif = sqrt((mean_exp_men - mean_exp_women) ^ 2)) %>% 
  ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences (USD)",  y = "Sports", fill = "USD")  

Mean differences by sex

If necessary install RColorBrewer package

# install.packages(RColorBrewer) 
library(RColorBrewer)

Set palettes (display.brewer.all())

discrete_palettes <- list(
  c("orange", "skyblue"),
  RColorBrewer::brewer.pal(6, "Accent"),
  RColorBrewer::brewer.pal(3, "Set2")
)

Calculate mean expenditure per participant & plot.

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_pamen = mean(exp_per_men),
            mean_exp_pawomen = mean(exp_per_women)) %>%  
  pivot_longer(cols = c(mean_exp_pamen,mean_exp_pawomen), names_to = "sex",
               values_to = "mean_exp_pa") %>% 
  ggplot(aes(x = mean_exp_pa, y = reorder(sports, mean_exp_pa), fill = sex)) +
  geom_bar(stat = "identity") +
  labs(x = "Year and Institution Mean Expenditure per Participant",
       y = "Sports", fill = "Sex") +
  scale_fill_discrete(labels = c("Men", "Women"), type = discrete_palettes)

Year and institution mean expenditure per participant

Calculate mean expenditure per participant differences and plot

myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_pamen = mean(exp_per_men),
            mean_exp_pawomen = mean(exp_per_women)) %>% 
  mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>% 
  ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif), 
             fill = mean_pa_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences Expenditures per Participant (USD)", 
       y = "Sports", fill = "USD") +
  scale_fill_continuous( type = "viridis")

Mean Sex Differences Expenditures per Participant (USD)

Compare plots with means: Expenditure “Gross” & per participant

plotmeanexp <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_men = mean(exp_men),
            mean_exp_women = mean(exp_women)) %>% 
  pivot_longer(cols = c(mean_exp_men,mean_exp_women), names_to = "sex",
               values_to = "mean_exp") %>% 
  ggplot(aes(x = mean_exp, y = reorder(sports, mean_exp), fill = sex)) +
  geom_bar(stat = "identity") +
  labs(x = "Year and Institution Mean Expenditure", y = "Sports", fill = "Sex") +
  scale_fill_discrete(labels = c("Men", "Women"))
plotmeanexp

Year and Institution Mean Expenditure

plotmeanexp_pa <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_pamen = mean(exp_per_men),
            mean_exp_pawomen = mean(exp_per_women)) %>%  
  pivot_longer(cols = c(mean_exp_pamen,mean_exp_pawomen), names_to = "sex",
               values_to = "mean_exp_pa") %>% 
  ggplot(aes(x = mean_exp_pa, y = reorder(sports, mean_exp_pa), fill = sex)) +
  geom_bar(stat = "identity") +
  labs(x = "Year and Institution Mean Expenditure per Participant",
       y = "Sports", fill = "Sex") +
  scale_fill_discrete(labels = c("Men", "Women"), type = discrete_palettes)
plotmeanexp_pa

Year and Institution Mean Expenditure per Participant

plotmeandifexp <- myselection %>% 
  group_by(sports) %>% # if facet_wrap, add year
  summarise(mean_exp_men = mean(exp_men),
            mean_exp_women = mean(exp_women)) %>% 
  mutate(mean_dif = sqrt((mean_exp_men - mean_exp_women) ^ 2)) %>% 
  ggplot(aes(x = mean_dif, y = reorder(sports, mean_dif), fill = mean_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences in Expenditures (USD)",  y = "Sports", fill = "USD")
plotmeandifexp

Mean Sex Differences in Expenditures

plotmeandifexp_pa <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_pamen = mean(exp_per_men),
            mean_exp_pawomen = mean(exp_per_women)) %>% 
  mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>% 
  ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif), 
             fill = mean_pa_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences Expenditures per Participant (USD)", 
       y = "Sports", fill = "USD") +
  scale_fill_continuous( type = "viridis")

If necessary install package

install.packages("gridExtra")

Load package

library(gridExtra)

Plots together to compare

gridExtra::grid.arrange(plotmeanexp, plotmeanexp_pa)

Comparing plots

gridExtra::grid.arrange(plotmeandifexp, plotmeandifexp_pa)

Comparing plots

Relationship between expenditure and revenue

plotmeandifexp_pa <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_exp_pamen = mean(exp_per_men),
            mean_exp_pawomen = mean(exp_per_women)) %>% 
  mutate(mean_pa_dif = sqrt((mean_exp_pamen - mean_exp_pawomen) ^ 2)) %>% 
  ggplot(aes(x = mean_pa_dif, y = reorder(sports, mean_pa_dif), 
             fill = mean_pa_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences Expenditures per Participant (USD)", 
       y = "Sports", fill = "USD") +
  scale_fill_continuous( type = "viridis")
plotmeandifrev_pa <- myselection %>% 
  group_by(sports) %>% 
  summarise(mean_rev_pamen = mean(rev_per_men),
            mean_rev_pawomen = mean(rev_per_women)) %>% 
  mutate(mean_parev_dif = sqrt((mean_rev_pamen - mean_rev_pawomen) ^ 2)) %>% 
  ggplot(aes(x = mean_parev_dif, y = reorder(sports, mean_parev_dif), 
             fill = mean_parev_dif)) +
  geom_bar(stat = "identity") +
  # facet_wrap(vars(year)) +
  labs(x = "Mean Sex Differences Revenues per Participant (USD)", 
       y = "Sports", fill = "USD") 

Grid plot

gridExtra::grid.arrange(plotmeandifrev_pa, plotmeandifexp_pa)

Grid plots compare

Correlation between Expenditures and Revenues

cor(myselection$exp_men, myselection$rev_men, method = "spearman")
[1] 0.9642041

Correlation between exp. and rev. per sport.

myselection %>% 
  group_by(sports) %>%
  summarise(assoc_exp_rev_men = cor(exp_men, rev_men, method = "spearman"))
# A tibble: 31 x 2
   sports             assoc_exp_rev_men
   <fct>                          <dbl>
 1 All Track Combined            0.855 
 2 Archery                       0.991 
 3 Basketball                    0.996 
 4 Beach Volleyball              0.987 
 5 Bowling                       0.996 
 6 Diving                        0.531 
 7 Equestrian                    0.5   
 8 Fencing                       0.696 
 9 Golf                          0.914 
10 Gymnastics                    0.0757
# ... with 21 more rows

Plot association

myselection %>% 
  group_by(sports) %>%
  ggplot(mapping = aes(x = exp_men, y = rev_men)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = FALSE, color = "blue") +
  labs(x = "Men Expenditure", 
       y = "Men Revenue", fill = "USD") +
  facet_wrap(vars(sports), scales = "free_y")

Plot association

myselection %>% 
  group_by(sports) %>%
  ggplot(mapping = aes(x = exp_women, y = rev_women)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(x = "Women Expenditure", 
       y = "Women Revenue", fill = "USD") +
  facet_wrap(vars(sports), scales = "free_y")

Relationship woman expenditure and revenue

7.7 References

Trinidad, A. (2022, May). NSC-R Workshops: NSC-R Tidy Tuesday. NSCR. Retrieved from https://nscrweb.netlify.app/posts/2022-05-03-nsc-r-tidy-tuesday/